Profilin interaction with phosphatidylinositol (4,5)-bisphosphate destabilizes the membrane of giant unilamellar vesicles.
نویسندگان
چکیده
Profilin, a small cytoskeletal protein, and phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] have been implicated in cellular events that alter the cell morphology, such as endocytosis, cell motility, and formation of the cleavage furrow during cytokinesis. Profilin has been shown to interact with PI(4,5)P2, but the role of this interaction is still poorly understood. Using giant unilamellar vesicles (GUVs) as a simple model of the cell membrane, we investigated the interaction between profilin and PI(4,5)P2. A number and brightness analysis demonstrated that in the absence of profilin, molar ratios of PI(4,5)P2 above 4% result in lipid demixing and cluster formations. Furthermore, adding profilin to GUVs made with 1% PI(4,5)P2 leads to the formation of clusters of both profilin and PI(4,5)P2. However, due to the self-quenching of the dipyrrometheneboron difluoride-labeled PI(4,5)P2, we were unable to determine the size of these clusters. Finally, we show that the formation of these clusters results in the destabilization and deformation of the GUV membrane.
منابع مشابه
Calcium Directly Regulates Phosphatidylinositol 4,5-Bisphosphate Headgroup Conformation and Recognition
The orchestrated recognition of phosphoinositides and concomitant intracellular release of Ca2+ is pivotal to almost every aspect of cellular processes, including membrane homeostasis, cell division and growth, vesicle trafficking, as well as secretion. Although Ca2+ is known to directly impact phosphoinositide clustering, little is known about the molecular basis for this or its significance i...
متن کاملVaccinia virus expresses a novel profilin with a higher affinity for polyphosphoinositides than actin.
We expressed in Escherichia coli the vaccinia virus gene for a protein similar to vertebrate profilins, purified the recombinant viral profilin, and characterized its interactions with actin and polyphosphoinositides. Compared with cellular profilins, this viral profilin has a low affinity (Kd > or = 35 microM) for human platelet actin monomers, a weak effect on the exchange of the nucleotide b...
متن کاملAssociation of profilin with filament-free regions of human leukocyte and platelet membranes and reversible membrane binding during platelet activation
Profilin is a conserved, widely distributed actin monomer binding protein found in eukaryotic cells. Mammalian profilin reversibly sequesters actin monomers in a high affinity profilactin complex. In vitro, the complex is dissociated in response to treatment with the polyphosphoinositides, phosphatidylinositol monophosphate, and phosphatidylinositol 4,5-bisphosphate. Here, we demonstrate the ul...
متن کاملProfilin-I-ligand interactions influence various aspects of neuronal differentiation.
Differentiating neurons extend membrane protrusions that develop into growing neurites. The driving force for neurite outgrowth is the dynamic actin cytoskeleton, which is regulated by actin-binding proteins. In this study, we describe for the first time, the role of profilin I and its ligand interactions in neuritogenesis of PC12 cells. High-level overexpression of wild-type profilin I had an ...
متن کاملPhosphatidylinositol 4,5-Bisphosphate Mediates the Targeting of the Exocyst to the Plasma Membrane for Exocytosis in Mammalian Cells□D
The exocyst is an evolutionarily conserved octameric protein complex that tethers post-Golgi secretory vesicles at the plasma membrane for exocytosis. To elucidate the mechanism of vesicle tethering, it is important to understand how the exocyst physically associates with the plasma membrane (PM). In this study, we report that the mammalian exocyst subunit Exo70 associates with the PM through i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 96 12 شماره
صفحات -
تاریخ انتشار 2009